3.1.45 \(\int \csc ^5(c+d x) (a+a \sec (c+d x))^3 \, dx\) [45]

3.1.45.1 Optimal result
3.1.45.2 Mathematica [A] (verified)
3.1.45.3 Rubi [A] (verified)
3.1.45.4 Maple [A] (verified)
3.1.45.5 Fricas [A] (verification not implemented)
3.1.45.6 Sympy [F(-1)]
3.1.45.7 Maxima [A] (verification not implemented)
3.1.45.8 Giac [A] (verification not implemented)
3.1.45.9 Mupad [B] (verification not implemented)

3.1.45.1 Optimal result

Integrand size = 21, antiderivative size = 111 \[ \int \csc ^5(c+d x) (a+a \sec (c+d x))^3 \, dx=-\frac {a^5}{2 d (a-a \cos (c+d x))^2}-\frac {3 a^4}{d (a-a \cos (c+d x))}+\frac {6 a^3 \log (1-\cos (c+d x))}{d}-\frac {6 a^3 \log (\cos (c+d x))}{d}+\frac {3 a^3 \sec (c+d x)}{d}+\frac {a^3 \sec ^2(c+d x)}{2 d} \]

output
-1/2*a^5/d/(a-a*cos(d*x+c))^2-3*a^4/d/(a-a*cos(d*x+c))+6*a^3*ln(1-cos(d*x+ 
c))/d-6*a^3*ln(cos(d*x+c))/d+3*a^3*sec(d*x+c)/d+1/2*a^3*sec(d*x+c)^2/d
 
3.1.45.2 Mathematica [A] (verified)

Time = 0.72 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.90 \[ \int \csc ^5(c+d x) (a+a \sec (c+d x))^3 \, dx=-\frac {a^3 (1+\cos (c+d x))^3 \sec ^6\left (\frac {1}{2} (c+d x)\right ) \left (12 \csc ^2\left (\frac {1}{2} (c+d x)\right )+\csc ^4\left (\frac {1}{2} (c+d x)\right )+48 \left (\log (\cos (c+d x))-2 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )-24 \sec (c+d x)-4 \sec ^2(c+d x)\right )}{64 d} \]

input
Integrate[Csc[c + d*x]^5*(a + a*Sec[c + d*x])^3,x]
 
output
-1/64*(a^3*(1 + Cos[c + d*x])^3*Sec[(c + d*x)/2]^6*(12*Csc[(c + d*x)/2]^2 
+ Csc[(c + d*x)/2]^4 + 48*(Log[Cos[c + d*x]] - 2*Log[Sin[(c + d*x)/2]]) - 
24*Sec[c + d*x] - 4*Sec[c + d*x]^2))/d
 
3.1.45.3 Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.94, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.524, Rules used = {3042, 4360, 25, 25, 3042, 25, 3315, 25, 27, 54, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^5(c+d x) (a \sec (c+d x)+a)^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a-a \csc \left (c+d x-\frac {\pi }{2}\right )\right )^3}{\cos \left (c+d x-\frac {\pi }{2}\right )^5}dx\)

\(\Big \downarrow \) 4360

\(\displaystyle \int \csc ^5(c+d x) \sec ^3(c+d x) \left (-(a (-\cos (c+d x))-a)^3\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int -(\cos (c+d x) a+a)^3 \csc ^5(c+d x) \sec ^3(c+d x)dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \csc ^5(c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^3dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {\left (a-a \sin \left (c+d x-\frac {\pi }{2}\right )\right )^3}{\sin \left (c+d x-\frac {\pi }{2}\right )^3 \cos \left (c+d x-\frac {\pi }{2}\right )^5}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {\left (a-a \sin \left (\frac {1}{2} (2 c-\pi )+d x\right )\right )^3}{\cos \left (\frac {1}{2} (2 c-\pi )+d x\right )^5 \sin \left (\frac {1}{2} (2 c-\pi )+d x\right )^3}dx\)

\(\Big \downarrow \) 3315

\(\displaystyle \frac {a^5 \int -\frac {\sec ^3(c+d x)}{(a-a \cos (c+d x))^3}d(a \cos (c+d x))}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {a^5 \int \frac {\sec ^3(c+d x)}{(a-a \cos (c+d x))^3}d(a \cos (c+d x))}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a^8 \int \frac {\sec ^3(c+d x)}{a^3 (a-a \cos (c+d x))^3}d(a \cos (c+d x))}{d}\)

\(\Big \downarrow \) 54

\(\displaystyle -\frac {a^8 \int \left (\frac {\sec ^3(c+d x)}{a^6}+\frac {3 \sec ^2(c+d x)}{a^6}+\frac {6 \sec (c+d x)}{a^6}+\frac {6}{a^5 (a-a \cos (c+d x))}+\frac {3}{a^4 (a-a \cos (c+d x))^2}+\frac {1}{a^3 (a-a \cos (c+d x))^3}\right )d(a \cos (c+d x))}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {a^8 \left (-\frac {\sec ^2(c+d x)}{2 a^5}-\frac {3 \sec (c+d x)}{a^5}+\frac {6 \log (a \cos (c+d x))}{a^5}-\frac {6 \log (a-a \cos (c+d x))}{a^5}+\frac {3}{a^4 (a-a \cos (c+d x))}+\frac {1}{2 a^3 (a-a \cos (c+d x))^2}\right )}{d}\)

input
Int[Csc[c + d*x]^5*(a + a*Sec[c + d*x])^3,x]
 
output
-((a^8*(1/(2*a^3*(a - a*Cos[c + d*x])^2) + 3/(a^4*(a - a*Cos[c + d*x])) + 
(6*Log[a*Cos[c + d*x]])/a^5 - (6*Log[a - a*Cos[c + d*x]])/a^5 - (3*Sec[c + 
 d*x])/a^5 - Sec[c + d*x]^2/(2*a^5)))/d)
 

3.1.45.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 54
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[E 
xpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && 
 ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && LtQ[m + n + 2, 0])
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3315
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b^p* 
f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x)^n, 
 x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && Intege 
rQ[(p - 1)/2] && EqQ[a^2 - b^2, 0]
 

rule 4360
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_.), x_Symbol] :> Int[(g*Cos[e + f*x])^p*((b + a*Sin[e + f*x])^m/Si 
n[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]
 
3.1.45.4 Maple [A] (verified)

Time = 1.00 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.38

method result size
norman \(\frac {-\frac {a^{3}}{8 d}-\frac {3 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{2 d}-\frac {23 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{4 d}+\frac {75 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{8 d}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \left (-1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{2}}+\frac {12 a^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {6 a^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}-\frac {6 a^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d}\) \(153\)
parallelrisch \(\frac {12 \left (\frac {\left (-\cos \left (2 d x +2 c \right )-1\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2}+\frac {\left (-\cos \left (2 d x +2 c \right )-1\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2}+\left (1+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {49 \csc \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cot \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (\cos \left (d x +c \right )-\frac {34 \cos \left (2 d x +2 c \right )}{49}+\frac {11 \cos \left (3 d x +3 c \right )}{49}-\frac {86}{147}\right )}{128}\right ) a^{3}}{d \left (1+\cos \left (2 d x +2 c \right )\right )}\) \(153\)
risch \(\frac {4 a^{3} \left (3 \,{\mathrm e}^{7 i \left (d x +c \right )}-9 \,{\mathrm e}^{6 i \left (d x +c \right )}+13 \,{\mathrm e}^{5 i \left (d x +c \right )}-16 \,{\mathrm e}^{4 i \left (d x +c \right )}+13 \,{\mathrm e}^{3 i \left (d x +c \right )}-9 \,{\mathrm e}^{2 i \left (d x +c \right )}+3 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{d \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )^{4} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}+\frac {12 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d}-\frac {6 a^{3} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}{d}\) \(154\)
derivativedivides \(\frac {a^{3} \left (-\frac {1}{4 \sin \left (d x +c \right )^{4} \cos \left (d x +c \right )^{2}}+\frac {3}{4 \sin \left (d x +c \right )^{2} \cos \left (d x +c \right )^{2}}-\frac {3}{2 \sin \left (d x +c \right )^{2}}+3 \ln \left (\tan \left (d x +c \right )\right )\right )+3 a^{3} \left (-\frac {1}{4 \sin \left (d x +c \right )^{4} \cos \left (d x +c \right )}-\frac {5}{8 \sin \left (d x +c \right )^{2} \cos \left (d x +c \right )}+\frac {15}{8 \cos \left (d x +c \right )}+\frac {15 \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{8}\right )+3 a^{3} \left (-\frac {1}{4 \sin \left (d x +c \right )^{4}}-\frac {1}{2 \sin \left (d x +c \right )^{2}}+\ln \left (\tan \left (d x +c \right )\right )\right )+a^{3} \left (\left (-\frac {\csc \left (d x +c \right )^{3}}{4}-\frac {3 \csc \left (d x +c \right )}{8}\right ) \cot \left (d x +c \right )+\frac {3 \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{8}\right )}{d}\) \(218\)
default \(\frac {a^{3} \left (-\frac {1}{4 \sin \left (d x +c \right )^{4} \cos \left (d x +c \right )^{2}}+\frac {3}{4 \sin \left (d x +c \right )^{2} \cos \left (d x +c \right )^{2}}-\frac {3}{2 \sin \left (d x +c \right )^{2}}+3 \ln \left (\tan \left (d x +c \right )\right )\right )+3 a^{3} \left (-\frac {1}{4 \sin \left (d x +c \right )^{4} \cos \left (d x +c \right )}-\frac {5}{8 \sin \left (d x +c \right )^{2} \cos \left (d x +c \right )}+\frac {15}{8 \cos \left (d x +c \right )}+\frac {15 \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{8}\right )+3 a^{3} \left (-\frac {1}{4 \sin \left (d x +c \right )^{4}}-\frac {1}{2 \sin \left (d x +c \right )^{2}}+\ln \left (\tan \left (d x +c \right )\right )\right )+a^{3} \left (\left (-\frac {\csc \left (d x +c \right )^{3}}{4}-\frac {3 \csc \left (d x +c \right )}{8}\right ) \cot \left (d x +c \right )+\frac {3 \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{8}\right )}{d}\) \(218\)

input
int(csc(d*x+c)^5*(a+a*sec(d*x+c))^3,x,method=_RETURNVERBOSE)
 
output
(-1/8/d*a^3-3/2*a^3/d*tan(1/2*d*x+1/2*c)^2-23/4*a^3/d*tan(1/2*d*x+1/2*c)^6 
+75/8*a^3/d*tan(1/2*d*x+1/2*c)^4)/tan(1/2*d*x+1/2*c)^4/(-1+tan(1/2*d*x+1/2 
*c)^2)^2+12/d*a^3*ln(tan(1/2*d*x+1/2*c))-6/d*a^3*ln(tan(1/2*d*x+1/2*c)-1)- 
6/d*a^3*ln(tan(1/2*d*x+1/2*c)+1)
 
3.1.45.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.59 \[ \int \csc ^5(c+d x) (a+a \sec (c+d x))^3 \, dx=\frac {12 \, a^{3} \cos \left (d x + c\right )^{3} - 18 \, a^{3} \cos \left (d x + c\right )^{2} + 4 \, a^{3} \cos \left (d x + c\right ) + a^{3} - 12 \, {\left (a^{3} \cos \left (d x + c\right )^{4} - 2 \, a^{3} \cos \left (d x + c\right )^{3} + a^{3} \cos \left (d x + c\right )^{2}\right )} \log \left (-\cos \left (d x + c\right )\right ) + 12 \, {\left (a^{3} \cos \left (d x + c\right )^{4} - 2 \, a^{3} \cos \left (d x + c\right )^{3} + a^{3} \cos \left (d x + c\right )^{2}\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right )}{2 \, {\left (d \cos \left (d x + c\right )^{4} - 2 \, d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \]

input
integrate(csc(d*x+c)^5*(a+a*sec(d*x+c))^3,x, algorithm="fricas")
 
output
1/2*(12*a^3*cos(d*x + c)^3 - 18*a^3*cos(d*x + c)^2 + 4*a^3*cos(d*x + c) + 
a^3 - 12*(a^3*cos(d*x + c)^4 - 2*a^3*cos(d*x + c)^3 + a^3*cos(d*x + c)^2)* 
log(-cos(d*x + c)) + 12*(a^3*cos(d*x + c)^4 - 2*a^3*cos(d*x + c)^3 + a^3*c 
os(d*x + c)^2)*log(-1/2*cos(d*x + c) + 1/2))/(d*cos(d*x + c)^4 - 2*d*cos(d 
*x + c)^3 + d*cos(d*x + c)^2)
 
3.1.45.6 Sympy [F(-1)]

Timed out. \[ \int \csc ^5(c+d x) (a+a \sec (c+d x))^3 \, dx=\text {Timed out} \]

input
integrate(csc(d*x+c)**5*(a+a*sec(d*x+c))**3,x)
 
output
Timed out
 
3.1.45.7 Maxima [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.93 \[ \int \csc ^5(c+d x) (a+a \sec (c+d x))^3 \, dx=\frac {12 \, a^{3} \log \left (\cos \left (d x + c\right ) - 1\right ) - 12 \, a^{3} \log \left (\cos \left (d x + c\right )\right ) + \frac {12 \, a^{3} \cos \left (d x + c\right )^{3} - 18 \, a^{3} \cos \left (d x + c\right )^{2} + 4 \, a^{3} \cos \left (d x + c\right ) + a^{3}}{\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}}{2 \, d} \]

input
integrate(csc(d*x+c)^5*(a+a*sec(d*x+c))^3,x, algorithm="maxima")
 
output
1/2*(12*a^3*log(cos(d*x + c) - 1) - 12*a^3*log(cos(d*x + c)) + (12*a^3*cos 
(d*x + c)^3 - 18*a^3*cos(d*x + c)^2 + 4*a^3*cos(d*x + c) + a^3)/(cos(d*x + 
 c)^4 - 2*cos(d*x + c)^3 + cos(d*x + c)^2))/d
 
3.1.45.8 Giac [A] (verification not implemented)

Time = 0.39 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.68 \[ \int \csc ^5(c+d x) (a+a \sec (c+d x))^3 \, dx=\frac {48 \, a^{3} \log \left (\frac {{\left | -\cos \left (d x + c\right ) + 1 \right |}}{{\left | \cos \left (d x + c\right ) + 1 \right |}}\right ) - 48 \, a^{3} \log \left ({\left | -\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} - 1 \right |}\right ) - \frac {a^{3} - \frac {12 \, a^{3} {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} - \frac {75 \, a^{3} {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {46 \, a^{3} {\left (\cos \left (d x + c\right ) - 1\right )}^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{{\left (\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} + \frac {{\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )}^{2}}}{8 \, d} \]

input
integrate(csc(d*x+c)^5*(a+a*sec(d*x+c))^3,x, algorithm="giac")
 
output
1/8*(48*a^3*log(abs(-cos(d*x + c) + 1)/abs(cos(d*x + c) + 1)) - 48*a^3*log 
(abs(-(cos(d*x + c) - 1)/(cos(d*x + c) + 1) - 1)) - (a^3 - 12*a^3*(cos(d*x 
 + c) - 1)/(cos(d*x + c) + 1) - 75*a^3*(cos(d*x + c) - 1)^2/(cos(d*x + c) 
+ 1)^2 - 46*a^3*(cos(d*x + c) - 1)^3/(cos(d*x + c) + 1)^3)/((cos(d*x + c) 
- 1)/(cos(d*x + c) + 1) + (cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2)^2)/d
 
3.1.45.9 Mupad [B] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.86 \[ \int \csc ^5(c+d x) (a+a \sec (c+d x))^3 \, dx=\frac {6\,a^3\,{\cos \left (c+d\,x\right )}^3-9\,a^3\,{\cos \left (c+d\,x\right )}^2+2\,a^3\,\cos \left (c+d\,x\right )+\frac {a^3}{2}}{d\,\left ({\cos \left (c+d\,x\right )}^4-2\,{\cos \left (c+d\,x\right )}^3+{\cos \left (c+d\,x\right )}^2\right )}-\frac {12\,a^3\,\mathrm {atanh}\left (2\,\cos \left (c+d\,x\right )-1\right )}{d} \]

input
int((a + a/cos(c + d*x))^3/sin(c + d*x)^5,x)
 
output
(2*a^3*cos(c + d*x) + a^3/2 - 9*a^3*cos(c + d*x)^2 + 6*a^3*cos(c + d*x)^3) 
/(d*(cos(c + d*x)^2 - 2*cos(c + d*x)^3 + cos(c + d*x)^4)) - (12*a^3*atanh( 
2*cos(c + d*x) - 1))/d